O número é um conceito fundamental em Matemática que tomou forma num longo desenvolvimento histórico. A origem e formulação deste conceito ocorreu simultaneamente com o despontar, entenda-se nascimento, e desenvolvimento da Matemática. As atividades práticas do homem, por um lado, e as exigências internas da Matemática por outro determinaram o desenvolvimento do conceito de número. A necessidade de contar objetos levou ao aparecimento do conceito de número Natural.
Todas as nações que desenvolveram formas de escrita introduziram o conceito de número Natural e desenvolveram um sistema de contagem. O desenvolvimento subsequente do conceito de número prosseguiu principalmente devido ao próprio desenvolvimento da Matemática. Os números negativos aparecem pela primeira vez na China antiga. Os chineses estavam acostumados a calcular com duas coleções de barras - vermelha para os números positivos e preta para os números negativos.No entanto, não aceitavam a ideia de um número negativo poder ser solução de uma equação. Os Matemáticos indianos descobriram os números negativos quando tentavam formular um algoritmo para a resolução de equações quadráticas. São exemplo disso as contribuições de Brahomagupta, pois a aritmética sistematizada dos números negativos encontra-se pela primeira vez na sua obra. As regras sobre grandezas eram já conhecidas através dos teoremas gregos sobre subtracção, como por exemplo (a -b)(c -d) = ac +bd -ad -bc, mas os hindus converteram-nas em regras numéricas sobre números negativos e positivos.
Diofanto (Séc. III) operou facilmente com os números negativos. Eles apareciam constantemente em cálculos intermédios em muitos problemas do seu "Aritmetika", no entanto havia certos problemas para o qual as soluções eram valores inteiros negativos como por exemplo:
4 = 4x +203x -18 = 5x^2
Nestas situações Diofanto limitava-se a classificar o problema de absurdo. Nos séculos XVI e XVII, muitos matemáticos europeus não apreciavam os números negativos e, se esses números apareciam nos seus cálculos, eles consideravam-nos falsos ou impossíveis. Exemplo deste facto seria Michael Stifel (1487- 1567) que se recusou a admitir números negativos como raízes de uma equação, chamando-lhes de "numeri absurdi". Cardano usou os números negativos embora chamando-os de "numeri ficti". A situação mudou a partir do (Séc.XVIII) quando foi descoberta uma interpretação geométrica dos números positivos e negativos como sendo segmentos de direções opostas.
meu novo blog>>>>>>>>>>>>>>>>> http://engenheirodavis75.blogspot.com/
Assinar:
Postar comentários (Atom)
Visualizações de páginas dos últimos 30 dias
Postagens populares
-
ALTO QI LUMINE O AltoQi Lumine é um programa integrado para projeto de instalações elétricas prediais, contendo uma base independente de ...
-
Todo concreto é composto de cimento, agregados (miúdo e graúdo), água, bem como aditivos, e seu endurecimento, entre outros fatores, é ...
-
Estou compartilhando 43 livros importantes para Engenheiros e estudantes. São 1,3Gigabytas de arquivos, mas fragmentei em 9 partes ficando ...
-
Estou disponibilizando um software livre, muito bom para estudantes para resolver exercicios de cálculo de esforços internos Segue link; htt...
-
DVD08.9 - parte 01/02 - Apostilas de técnicas cosntrutivas1 TAMANHO; 250 mbyts QUANT. DE ARQUIVOS; 703 LINK; http://www.4shar...
-
Da Redação, com informações de Paula Pitta Pelo menos oito operários morreram em um acidente em uma obra na região do Iguatemi por volta d...
Nenhum comentário:
Postar um comentário